
Life as a Service:
Scalability and Other Aspects

@despos facebook.com/naa4e

ARCHITECT, TRAINER AND CONSULTANT

Dino Esposito

Who’s this guy?

NO – I’M NOT THE SINGER

PART I
Scalability and Measurable Tasks

SCALABILITY

Scalability is the capability of a

system, network, or process to handle

a growing amount of work, or its

potential to be enlarged in order to

accommodate that growth.

Scalability is the ability of a

system to expand to meet your

business needs. You scale a

system by adding extra hardware

or by upgrading the existing

hardware without changing much

of the application.

Everyone talks about it

SCALABILITY

Nobody really knows how to do it

SCALABILITY

Everyone thinks everyone else is doing it

SCALABILITY

So everyone claims they are doing it

SCALABILITY

*

So everyone claims they want to do it

SCALABILITY

Customers only*

SCALABILITY ≈ teenage sex

n Attributes of Scalability

Not everything that matters can be measured and not everything that

can be measured matters READ ON

COOL

PONDERING

SEXY

I’M NOT SCALABLE

PerformanceResiliencyFine-tuning

10 EUR 12 EUR TROUBLES

5 EUR JOY5 EUR x N
SCALABLE

NOT

SCALABLE

Queuing theory

A queue forms when frequency at which requests for

a service are placed exceeds the time it takes to

fully serve a pending request.

 It’s about the performance of a single task

 It’s about expanding the system to perform more tasks

at the same time

Became a problem as the web

became popular

SCALABILITY

ClosedClosed

Checkout Lane

Pattern #1

Open Open

ClosedClosed

Checkout Lane

Pattern #2

Open Open

Context is king

SCALABILITY

Common Tradeoffs

Scalability in Space vs Scalability in Time

Vertical Scalability vs Horizontal Scalability

Scalability in Space

Configuration of systems for particular users

Big data

Time-traveling data

Data sharding

Scalability in Time

Infrastructure and network balancing

Cloud

Geographic distribution of data/service centers

Vertical vs. Horizontal

Vertical

Norm for 20 years – so long as DB was central point

Doesn’t scale beyond a point

Front caching is a good/cheaper way to achieve it

• Proxy servers with load balancing capabilities

• Working outside the core code of the application

• Squid, Varnish, Nginx

Horizontal

Mostly an architectural point

Critical parts can be expanded without

• Damaging other parts

• Introducing inconsistencies / incongruent data

Horizontal

LOAD

BALANCING

MULTIPLE

INSTANCES
DATA

SHARDING

Real-world

Cloud apps are probably the easiest and most

effective way to achieve forms of scalability today.

But you can have well responsive apps without

re-architecting for the cloud.

PART II
Caching and Measurable Performance

Operational Practice #1

Remove bottlenecks

• Convoluted queries

• Long initialization steps

• Inefficient algorithms

HIGH throughput

MEDIUM cost

TIME consuming

DELICATE

Operational Practice #2

Move “some” requests to other servers

• CDN for static files

• Geographically distributed sites

LOW throughput

LOW cost

Quick

Improves the user’s perception of the system

Operational Practice #3

Output Caching

• By param

• By locale

• By custom data

for example, multi-tenant sites

MEDIUM

throughput

LOW cost

Quick

MEDIUM risk

Operational Practice #4

Data Caching

• Problematic with farms

• Auto-updatable internal cache

• Use of distributed caches

Redis, ScaleOut, NCache

HIGH throughput

MEDIUM cost

Relatively Quick

DELICATE

Operational Practice #5

Proxy caching for example Varnish

• Installed in front of any web site

• Fully configurable

• Cache and load balancer in one

HIGH throughput

Relatively LOW

cost

Relatively Quick

Not an either/or choice; often go together.

CDN vs. Proxy Caching

PROXY CACHING

CDN CDN CDN

Web site

Geographically

distributed

Architectural Practice #1

CQRS Architecture

 Optimize stacks differently

HIGH throughput

HIGH cost

Time consuming

Presentation layer

Application layer

Infrastructure layer

Canonical layered architecture

Domain layer

Presentation layer

Application layer

Infrastructure layer

CQRS

Commands Queries

Domain layer

Data

access

+

DTO

Message-based business logic implementation

BUSINESS

DOMAIN

Command

Context #1

Query

Context #1

Command

Context #2

Query

Context #2

Command

Context #3

Query

Context #3

CQRS Design

DDD Analysis

CONTEXT

#1

CONTEXT

#2

CONTEXT

#3

Requirements

Architectural Practice #2

Single-tier and stateless server

• One server

• No session state

• Quick and easy to duplicate

• Behind a load balancer

HIGH throughput

Low cost

Quick

Cloud support

 On-demand servers

 Pay per use

 Configure easily

 No middleware costs

 Better failure policies

Architectural Practice #3

Be aware of NoSQL and polyglot persistence

• Relational is OK … until it works

• Sharding/growth of data

Azure SQL
+ Many small tables <500GB each

+ No extra license costs

+ Zero TCO

+ HA automatically on

SQL Server in a VM
+ Fewer large tables >500GB each

+ Reuse existing licenses

+ More machine resources

+ HA and management is your own

Case-studies

StackOverflow

Top50 most trafficked web sites
500M page views in a month and growing

 < 10 Visual Studio projects

 100,000 lines of code

 Nearly no unit tests: code coverage of 0.25%

 Web projects based on ASP.NET MVC

 Move fast and break things (that users don’t see)

 Deploy 5 times a day

Caching is the secret weapon

5 levels of data caching

 Network (i.e., CDN and browsers)

 Server (ASP.NET cache)

 Site (Redis)

 SQL Server (1 terabyte of RAM)

 Solid state disks

For more information: http://speakerdeck.com/sklivvz

http://speakerdeck.com/sklivvz

Globo.com

Largest portal and ISP in South America
45 million views per day 2x StackOverflow

 1 Scrum master, 1 designer, 1 lead architect

 TDD, peer programming, CI, 10 days sprints

 WordPress with PHP

 Python/Django for server-side code

 Data storage is MySQL, MongoDB & Memcached

 Reverse proxy caching

Talking CMS that grow BIG

1. Your database grows really BIG

2. Monolithic code hard to cluster

3. Content generation become EXPENSIVE

4. Site slows DANGEROUSLY down

My personal horror story

Presentation

MOST OF THE TIME … YOU DON’T HAVE SCALABILITY PROBLEMS.

YOUR CODE JUST SUCKS.

Application

Domain

Infrastructure
HTTP facade

Presentation

Application

Domain

Infrastructure

SERVER

SERVER

FOLLOW

That’s All Folks!

facebook.com/naa4e

software2cents.wordpress.com

dino.esposito@jetbrains.com

@despos FOLLOW

facebook.com/plarium

developers.plarium.com

@udev_tech_events

