
Refactoring - Team Strategies

Michael Feathers
R7K Research & Conveyance

A series of small steps, each of which changes a
program’s internal structure without changing its external
behavior.

A series of small steps, each of which changes a
program’s internal structure without changing its external
behavior.

The goal is to make systems more
maintainable over time

A series of small steps, each of which changes a
program’s internal structure without changing its external
behavior.

The goal is to make systems more
maintainable over time

In the large, this is a team activity

Behavioral Economics and Code

Is it easier to add code to an existing
method than to create a new method?

Is it easier to add a method to an existing
class than to add a new class?

We should not be surprised by what we
see in our code

business development

business development

features

estimates

Technical Debt - the amount of effort it
takes to refactor your code to make it easy
to add the next feature non-invasively.

Technical Debt - the amount of effort it
takes to refactor your code to make it easy
to add the next feature non-invasively.

Open/Closed

Practices

Design Decision Cards

Practice

Design Decision Cards

Practice

Maintain cards for each of the design decisions you
make that you may consider revisiting someday.
Periodically re-estimate them to consider feasibility

Feature Trend Cards

Practice

Feature Trend Cards

Practice

Hypothesize a couple of features that you will never
add to your code. Task them and estimate them
periodically. See the debt trend for areas they touch.

Scratch Refactoring

Practice

Scratch Refactoring

Practice

Refactor massively in an editor. Emphasize
extractions, and moves. Don’t worry about
compilation. Never check it in. Use the experience
to explore

Suggestive Refactoring

Practice

Suggestive Refactoring

Practice

Create small refactoring stories based upon and add
them to the backlog

Split Preparatory Refactorings

Practice

Split Preparatory Refactorings

Practice

Highlight refactoring within a team by making it a
separate task done by different people. The handoff
forces discussion

Privileged Abstractions

Practice

Privileged Abstractions

Practice

Select the abstractions that you consider primary in
the system and document them. Have conversations
around them

Limited WIP Refactoring

Practice

Limited WIP Refactoring

Practice

Never have more than 1 or 2 large scale refactorings
in progress at once. This forces focus and emphasizes
completion

Architectural Mapping

Practice

Architectural Mapping

Practice

Diagram the system you are working as it it were the
terrain of an old country. Document the dragons.
Have a common team vision of the place where the
best code resides

Silent Alarms

Practice

Silent Alarms

Practice

Don’t have check-in gates. Let people make mistakes.
Investigate the mistakes off-line and see why they
happened. Then, intervene

Scrape the Pan

Practice

Scrape the Pan

Practice

Global mutable state binds code in place. Consolidate
the state to make it possible pry out particular
subsystems, making them independently testable

public class XXXFactories {

 public static ResourceFactory resourceFactory = new ResourceFactory() {
 public Resource makeResource(int id) {
 return new Resource(id);
 }
 };

 …
}

public class XXXRepositories {
 public final static PartialFillRepository partialFills = new PartialFillRepository();
 …
}

public class PartialFillRepository {
 private Hashtable partials = new Hashtable();

 public PartialFill getPartialFill(int id, String symbol) {
 String key = id + " " + symbol;
 Object partial = partials.get(key);
 if (partial == null)
 throw new InvalidPartialFill(id, symbol);
 return (PartialFill)partial;
 }

 public void resetForTest() {
 partials = new Hashtable();
 }
}

Direction Tagging

Practice

Direction Tagging

Practice

Create tags for areas that need work. Make them
orthogonal and embed them in the code. They do
not go stale as comments do. Tackle then in a limited
WIP manner

Transparent Design Quality

Practice

Transparent Design Quality

Practice

Transparent Design Quality

Practice

http://r7krecon.com

http://r7krecon.com

