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A series of small steps, each of which changes a 
program’s internal structure without changing its external 
behavior.

The goal is to make systems more 
maintainable over time

In the large, this is a team activity





Behavioral Economics and Code



Is it easier to add code to an existing 
method than to create a new method?



Is it easier to add a method to an existing 
class than to add a new class?



We should not be surprised by what we 
see in our code
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Open/Closed



Practices



Design Decision Cards

Practice



Design Decision Cards

Practice

Maintain cards for each of the design decisions you 
make that you may consider revisiting someday.  
Periodically re-estimate them to consider feasibility
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Feature Trend Cards

Practice

Hypothesize a couple of features that you will never 
add to your code.  Task them and estimate them 
periodically.  See the debt trend for areas they touch.



Scratch Refactoring
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Scratch Refactoring

Practice

Refactor massively in an editor. Emphasize 
extractions, and moves. Don’t worry about 
compilation.  Never check it in.  Use the experience 
to explore
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Suggestive Refactoring

Practice

Create small refactoring stories based upon and add 
them to the backlog



Split Preparatory Refactorings

Practice



Split Preparatory Refactorings

Practice

Highlight refactoring within a team by making it a 
separate task done by different people.  The handoff 
forces discussion
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Privileged Abstractions

Practice

Select the abstractions that you consider primary in 
the system and document them.  Have conversations 
around them
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Limited WIP Refactoring

Practice

Never have more than 1 or 2 large scale refactorings 
in progress at once. This forces focus and emphasizes 
completion
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Architectural Mapping

Practice

Diagram the system you are working as it it were the 
terrain of an old country. Document the dragons. 
Have a common team vision of the place where the 
best code resides
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Silent Alarms

Practice

Don’t have check-in gates. Let people make mistakes. 
Investigate the mistakes off-line and see why they 
happened.  Then, intervene
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Scrape the Pan

Practice

Global mutable state binds code in place. Consolidate 
the state to make it possible pry out particular 
subsystems, making them independently testable



public class XXXFactories { 

    public static ResourceFactory resourceFactory = new ResourceFactory() { 
        public Resource makeResource(int id) { 
            return new Resource(id); 
        } 
    }; 

    … 
} 



public class XXXRepositories { 
    public final static PartialFillRepository partialFills = new PartialFillRepository(); 
    … 
} 

public class PartialFillRepository { 
    private Hashtable partials = new Hashtable();   

    public PartialFill getPartialFill(int id, String symbol) { 
        String key = id + " " + symbol; 
        Object partial = partials.get(key); 
        if (partial == null)  
            throw new InvalidPartialFill(id, symbol); 
        return (PartialFill)partial; 
    } 

    public void resetForTest() { 
        partials = new Hashtable(); 
    } 
} 
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Direction Tagging

Practice

Create tags for areas that need work.  Make them 
orthogonal and embed them in the code.  They do 
not go stale as comments do.  Tackle then in a limited 
WIP manner
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